Skip to main content
Log in

Phylogenetics of New World Astragalus: Screening of novel nuclear loci for the reconstruction of phylogenies at low taxonomic levels

  • Systematics
  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

This study explores methods to use information gathered from genomics technology to understand evolutionary relationships in the hyperdiverse legume group Neo-Astragalus. These species inhabit deserts and mountains of North and South America, and even though the monophyly of the group is well established, relationships within it are still poorly understood. Plastid genes, commonly used to infer phylogenies in plants, are usually not useful for closely related taxa because of low levels of genetic variation. TheMedicago truncatula genome project provided a suite of candidate nuclear loci with high levels of variation that might prove suitable for low-level phylogenetics. This paper reports the development of methods for screening a large number of these nuclear loci, and detailed analysis of four of them. Four different patterns of phylogenetic diversification occur in the loci sampled from these genomes ofAstragalus species. One locus (CNGC4) was single copy and could be directly used in phylogenetic analyses. Two loci (ARG10 and FENR) showed patterns strongly suggestive of duplication events in some taxa, and one locus (tRALS) has apparently undergone a cryptic duplication, making it very difficult to diagnose. Potential methods for using the information provided by these loci are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Barneby, R. C.. 1964. Atlas of North AmericanAstragalus. Memoirs of The New York Botanical Gardens 13: 1–1188.

    Google Scholar 

  • Bell, C. J., R. A. Dixon, A. D. Farmer, R. Flores, J. Inman, R. A. Gonzales, M. J. Harrison, N. L. Paiva, A. D. Scott, J. W. Weller &G. D. May. 2001. TheMedicago Genome Initiative: a model legume database. Nucleic Acids Research 29: 114–117.

    Article  PubMed  CAS  Google Scholar 

  • Bonnin, I., T. Huguet, M. Gherardi, J. M. Prosperi &I. Olivieri. 1996. High level of polymorphism and spatial structure in a selfing plant species,Medicago truncatula (Leguminosae), shown using RAPD markers. American Journal of Botany 83: 843–855.

    Article  Google Scholar 

  • Britt, A. B. &G. D. May. 2003. Re-engineering plant gene targeting. Trends in Plant Science 8: 90–95.

    Article  PubMed  CAS  Google Scholar 

  • Brumfield, R. T., P. Beerli, D. A. Nickerson &S. V. Edwards. 2003. The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology & Evolution 18: 249–256.

    Article  Google Scholar 

  • Choi, H. K., D. Kim, T. Uhm, E. Limpens, H. Lim, J. H. Mun, P. Kalo, R. V. Penmetsa, A. Seres, O. Kulikova, B. A. Roe, T. Bisseling, G. B. Kiss &D. R. Cook. 2004. A sequence-based genetic map ofMedicago truncatula and comparison of marker colinearity withM. sativa. Genetics 166: 1463–1502.

    Article  PubMed  CAS  Google Scholar 

  • Cook, D. R.. 1999.Medicago truncatula—a model in the making. Commentary. Current Opinion in Plant Biology 2: 301–304.

    Article  CAS  Google Scholar 

  • Cunningham, C. W.. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14: 733–740.

    PubMed  CAS  Google Scholar 

  • de Queiroz, A., M. J. Donoghue &J. Kim. 1995. Separate versus combined analysis of phylogenetic evidence. Annual Review of Ecology and Systematics 26: 657–681.

    Article  Google Scholar 

  • Doyle, J. J., J. L. Doyle &J. D. Palmer. 1995. Multiple independent losses of 2 genes and one intron from legume chloroplast genomes. Systematic Botany 20: 272–294.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Conficience limits on phylogenies—an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • —. 2003. Inferring phylogenies. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Ford, V. S. &L. D. Gottlieb. 2003. Reassessment of phylogenetic relationships inClarkia sect.Sympherica. American Journal of Botany 90: 284–292.

    CAS  Google Scholar 

  • Gene-Codes. 1991-2000. Sequencher. Gene Codes Corp., Ann Arbor, Michigan.

    Google Scholar 

  • Gottlieb, L. D. &V. S. Ford. 1996. Phylogenetic relationships among the sections ofClarkia (Onagraceae) inferred from the nucleotide sequences of PgiC. Systematic Botany 21: 45–62.

    Article  Google Scholar 

  • Graham, S. W., P. A. Reeves, A. C. Burns &R. G. Olmstead. 2000. Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inferende. International Journal of Plant Sciences 161 (6 Suppl.): S83-S96.

    Article  CAS  Google Scholar 

  • Graur, D. &W-H Li. 2000. Fundamentals of molecular evolution. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Gugerli, F., C. Sperisen, U. Buchler, L. Brunner, S. Brodbeck, J. D. Palmer &Y. L. Qiu. 2001. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny, Molecular Phylogenetics and Evolution 21: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson, P. K., S. Ribstein &D. R. Taylor. 2003. Molecular evolution of insertions and deletion in the chloroplast genome ofSilene. Molecular Biology and Evolution 20: 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  • Kawakita, A., T. Sota, J. S. Ascher, M. Ito, H. Tanaka &M. Kato. 2003. Evolution and phylogenetic utility of alignment gaps within intron sequences of three nuclear genes in bumble bees (Bombus). Molecular Biology and Evolution 20: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Lavin, M., J. J. Doyle &J. D. Palmer. 1990. Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390–402.

    Article  CAS  Google Scholar 

  • Mathews, S. &M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950.

    Article  PubMed  CAS  Google Scholar 

  • —. 2000. Basal angiosperm phylogeny inferred from duplicate phytochromes A and C. International Journal of Plant Sciences 161: S41-S55.

    Article  Google Scholar 

  • Morin, P. A., G. Luikart &R. K. Wayne. 2004. SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution 19: 208–216.

    Article  Google Scholar 

  • Nozaki, H., M. Matsuzaki, M. Takahara, O. Misumi, H. Kuroiwa, M. Hasegawa, T. Shin-i, Y. Kohara, N. Ogasawara &T. Kuroiwa. 2003. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Journal of Molecular Evolution 56: 485–497.

    Article  PubMed  CAS  Google Scholar 

  • Pons, J., T. G. Barraclough, K. Theodorides, A. Cardoso &A. P. Vogler. 2004. Using exon and intron sequences of the gene Mp20 to resolve basel relationships inCicindela (Coleoptera: Cicindelidae). Systematic Biology 53: 554–570.

    Article  PubMed  Google Scholar 

  • Pryer, K. M., H. Schneider, A. R. Smith, R. Cranfill, P. G. Wolf, J. S. Hunt &S. D. Sipes. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409: 618–622.

    Article  PubMed  CAS  Google Scholar 

  • Rambaut, A. 1996. Se−Al sequence alignment editor. University of Oxford, Oxford, UK.

    Google Scholar 

  • Sanderson, M. J. 1991. Phylogenetic relationships within North AmericanAstragalus L. (Fabaceae). Systematic Botany 16: 414–430.

    Article  Google Scholar 

  • —. 1993. Phylogenetic-relationships in North-AmericanAstragalus (Fabaceae) based on chloroplast DNA restriction site variation. Systematic Botany 18: 395–408.

    Article  Google Scholar 

  • —. 1996. Diversification rates in a temperate legume clade: are there “so many species” ofAstragalus (Fabaceae)? American Journal of Botany 83: 1488–1502.

    Article  Google Scholar 

  • Simmons, M. P. &H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369–381.

    Article  PubMed  CAS  Google Scholar 

  • ——. 2001. Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Systematic Biology 50: 454–462.

    Article  PubMed  CAS  Google Scholar 

  • Spellenberg, R. 1976. Chromosome-numbers and their cytotaxonomic significance for North-AmericanAstragalus (Fabaceae). Taxon 25: 463–476.

    Article  Google Scholar 

  • Swofford, D. L. 2001. PAUP*. Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland.

    Google Scholar 

  • Wojciechowski, M. F., M. J. Sanderson, B. G. Baldwin &M. J. Donoghue. 1993. Monophyly of aneuploidAstragalus (Fabaceae)—Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 80: 711–722.

    Article  CAS  Google Scholar 

  • ——. 1999. Evidence on the monophyly ofAstragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Systematic Botany 24: 409–437.

    Article  Google Scholar 

  • —. 2004. A phylogeny of legumes (Leguminosae) based on analyses of the plastid matK gene resolves many well-supported subclades within the family. American Journal of Botany 91: 1846–1862.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa A. Scherson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherson, R.A., Choi, HK., Cook, D.R. et al. Phylogenetics of New World Astragalus: Screening of novel nuclear loci for the reconstruction of phylogenies at low taxonomic levels. Brittonia 57, 354–366 (2005). https://doi.org/10.1663/0007-196X(2005)057[0354:PONWAS]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0007-196X(2005)057[0354:PONWAS]2.0.CO;2

Key words

Navigation